

Un progetto:

Realizzato da:

Promosso da:

Indice

1.	EXECUTIVE SUMMARY	4
2.	ANALISI DI SCENARIO	6
	Data center e cloud: definizione e concetti chiave	6
	Gli attori della filiera cloud e data center	7
	Il mercato data center: la situazione in Italia e in Lombardia	9
	Le fasi di apertura di un data center	10
	Il mercato cloud	12
	Il cloud come abilitatore di innovazione.	13
	Cloud come abilitatore di nuovi modelli di lavoro	14
	Esg ed impatti sociali ed ambientali	14
	I principali rischi del cloud	16
	L'impatto sulle competenze manageriali	17
3.	IL MODELLO	19
	Fonti e lavoro introduttivo	19
	Il modello per le competenze manageriali	19
	Competenze Tecniche	20
	Competenze Trasversali	21
	Le aree del modello	22
	Le soft-skills	25
4.	RISULTATI	26
	Analisi dei risultati: approfondimento Middle manager	26
	Analisi dei risultati: Approfondimento C-level	28
	Analisi dei risultati: competenze per l'avanzamento di carriera	30
	Evidenze: i principali gap formativi	32
5.	CONCLUSIONI	34
6.	LA PRESENTAZIONE DEL PROGETTO	35
7.	NOTA METODOLOGICA	36
	Sviluppo del modello	36
	Validazione del modello e analisi dei risultati	37

Indice figure

Figura 1 - Gli attori della filiera Data Center	8
Figura 2 - Le nuove aperture di Data Center in Italia nel 2024	9
Figura 3 - Le fasi di apertura di un Data center	11
Figura 4 – Il modello: competenze tecniche e trasversali	22
Figura 5 - Middle Manager: competenze attuali e gap formativi	27
Figura 6 - Middle manager: competenze ritenute importanti	28
Figura 7 - C-level: competenze attuali e gap formativi	29
Figura 8 - C-level: competenze ritenute importanti	30
Figura 9 - Le competenze per diventare C-level	31
Figura 10 - I principali gap formativi	32

1. EXECUTIVE SUMMARY

Negli ultimi anni, la trasformazione digitale ha ridefinito il profilo del manager IT nei diversi livelli organizzativi, introducendo nuove sfide legate all'adozione del Cloud e alla gestione dei Data Center. Negli ultimi anni, la trasformazione digitale ha ridefinito il profilo del manager IT nei diversi livelli organizzativi, introducendo nuove sfide legate all'adozione del Cloud e alla gestione dei Data Center. Queste infrastrutture, infatti, non sono più semplici centri di archiviazione fisica, ma si configurano come veri e propri snodi strategici, diventando elementi centrali nell'implementazione di soluzioni di Intelligenza Artificiale e dell'analisi avanzata dei dati.. Inoltre, la crescita dello smart working e le crescenti esigenze di sicurezza e compliance rendono fondamentali, oltre alle competenze tecniche in ambito Cloud e Data Center, anche le soft skill come la gestione del cambiamento e la comunicazione efficace, fattori chiave per garantire continuità operativa e competitività aziendale.

Alla luce di questo scenario in costante evoluzione, diventa fondamentale per le organizzazioni saper individuare con precisione le competenze manageriali chiave, al fine di progettare percorsi di formazione mirati che consentano di affrontare con successo le sfide attuali e future del settore IT. Questo progetto nasce proprio con l'obiettivo di identificare, analizzare e prioritizzare le competenze critiche per i manager impegnati nella gestione delle infrastrutture Cloud e Data Center, proponendo una metodologia rigorosa di analisi che consenta di evidenziare le principali aree di miglioramento e di intervenire in modo strutturato sulle esigenze formative.

Nello specifico, il report si concentra sull'analisi delle competenze manageriali, distinguendo tra tre livelli di responsabilità: C-level, Middle Manager e Project Manager. Per mappare le competenze, è stato sviluppato un framework dedicato che individua 14 competenze fondamentali suddivise in due macro-aree: tecniche e trasversali. Le competenze tecniche riguardano aspetti legati più prettamente al mondo IT, mentre quelle trasversali si riferiscono ad abilità più comuni a tutti i manager, come la gestione del capitale umano, la leadership, la visione strategica, la negoziazione e la gestione delle relazioni interne ed esterne.

Attraverso la somministrazione di una survey dedicata ai manager IT appartenenti ai tre livelli identificati, è stato possibile rilevare e analizzare i principali gap di competenze attualmente presenti, oltre a rilevare quali skill siano percepite come più importanti dai diversi profili manageriali. Dai risultati dell'indagine, emergono in modo trasversale due principali aree di debolezza: Data Management & Analytics e Sostenibilità. Si tratta di competenze la cui rilevanza è destinata a crescere ulteriormente nei prossimi anni, in virtù dell'aumento esponenziale dei dati generati (basti pensare all'enorme sviluppo dell'AI) e dell'importanza attribuita alla responsabilità ambientale, sociale e di governance (ESG) nelle strategie d'impresa. Al tempo stesso, tra le competenze considerate maggiormente rilevanti da Middle Manager e C-level si segnalano la capacità di interlocuzione efficace con attori chiave sia interni che esterni all'organizzazione, e la gestione del capitale umano, elementi ritenuti essenziali per guidare processi di trasformazione digitale in modo integrato e sostenibile.

In sintesi, il report propone un'analisi strutturata dei fabbisogni formativi dei manager IT, fornendo esempi concreti delle principali skill su cui è prioritario agire. L'identificazione dei gap di competenze e delle aree di miglioramento consente di delineare possibili strategie e percorsi di formazione personalizzati, in grado di supportare la crescita professionale dei manager IT e

rafforzare la capacità delle organizzazioni di affrontare la crescente complessità tecnologica e organizzativa derivante dalla digitalizzazione. Tali indicazioni risultano particolarmente preziose in un contesto in cui la rapidità del cambiamento e la competitività richiedono una continua evoluzione delle competenze e una visione manageriale sempre più agile, lungimirante e orientata al futuro.

2. ANALISI DI SCENARIO

Data center e cloud: definizione e concetti chiave

L'Italia sta vivendo una fase di crescita senza precedenti nel settore dei Data Center, con un aumento significativo del numero di infrastrutture presenti sul territorio e una crescente attrazione di investimenti. I Data Center sono infrastrutture fondamentali per lo sviluppo di servizi digitali innovativi destinati a imprese e utenti finali. La maggior parte dei servizi che utilizziamo quotidianamente, sia in ambito privato che professionale, dipende dall'esistenza di queste infrastrutture fisiche, che consentono l'archiviazione e l'elaborazione dei dati generati. Dai semplici invii di e-mail alle richieste complesse legate agli strumenti di Generative AI, fino alla riproduzione di contenuti in streaming, i Data Center rappresentano il cuore pulsante delle tecnologie digitali moderne.

Per quanto riguarda il Cloud Computing, invece, esso è un tema strettamente collegato ai Data Center, in quanto rappresenta il modello attraverso cui le risorse informatiche vengono rese disponibili agli utenti. La definizione ufficiale del Cloud Computing è stata fornita dal NIST (National Institute of Standards and Technology) nel 2011: "Il cloud computing è un modello che consente l'accesso ubiquo, comodo e su richiesta, tramite rete, a un insieme condiviso di risorse computazionali configurabili (come reti, server, storage, applicazioni e servizi) che possono essere rapidamente fornite e rilasciate con uno sforzo minimo di gestione o interazione con il provider di servizi".

Secondo questa definizione, il Cloud Computing è caratterizzato da cinque elementi fondamentali:

- Broad Network Access: Le risorse di calcolo, come il tempo del server e lo storage di rete, possono essere fornite automaticamente senza richiedere interazione diretta con il provider.
- Self-service On Demand: Le funzionalità sono accessibili tramite la rete attraverso meccanismi standardizzati, utilizzabili da dispositivi come telefoni, tablet e laptop.
- Resource Pooling: Le risorse del provider sono condivise tra più utenti tramite un
 modello multi-tenant. Le risorse fisiche e virtuali vengono assegnate e riassegnate
 dinamicamente in base alla domanda, garantendo l'indipendenza dalla localizzazione
 geografica delle risorse, anche se il cliente può specificare preferenze a livello di paese,
 stato o data center.
- Rapid Elasticity: Le risorse possono essere scalate rapidamente in modo elastico, aumentando o diminuendo in base alle necessità, anche in modo automatico.
- Measured Service: L'utilizzo delle risorse cloud è monitorato e ottimizzato continuamente, con un sistema di reportistica che permette di controllare e misurare le prestazioni, anche in un'ottica di sostenibilità.

Il Cloud Computing si articola in tre principali modelli di servizio offerti dai fornitori:

- 1. Infrastructure-as-a-Service (IaaS): Il provider offre risorse di calcolo come networking, storage e capacità elaborativa, gestite autonomamente dall'utente. Le risorse sono scalabili e flessibili in base alle esigenze del business.
- 2. Platform-as-a-Service (PaaS): Il provider mette a disposizione piattaforme preconfigurate ottimizzate per lo sviluppo, il testing e l'erogazione di applicazioni personalizzate. Queste piattaforme includono sistemi operativi, gestione di database, server applicativi, strumenti di business process management (BPM) e ambienti di sviluppo software. L'utente ha il controllo su alcuni aspetti della piattaforma, mentre l'infrastruttura sottostante è gestita dal fornitore.
- 3. Software-as-a-Service (SaaS): Il provider offre applicazioni pronte all'uso, gestite su un'infrastruttura cloud. Gli utenti accedono a questi servizi on-demand tramite Internet e pagano in base al consumo effettivo, ad esempio in funzione del numero di utenti mensili.

Sempre secondo il NIST, esistono quattro modelli principali di deployment, ovvero modalità con cui il cloud è distribuito:

- Public Cloud: L'infrastruttura è gestita dal cloud provider ed è disponibile per l'uso pubblico.
- Private Cloud: L'infrastruttura è destinata all'uso esclusivo di una singola organizzazione, che può includere diverse unità aziendali. Può essere gestita internamente o da terze parti e può risiedere sia on-premises che off-premises.
- Hybrid Cloud: Combina elementi di cloud pubblico, privato e soluzioni on-premises, permettendo alle aziende di sfruttare i vantaggi di ciascun modello a seconda delle esigenze specifiche.
- Community Cloud: L'infrastruttura è condivisa da una specifica comunità di consumatori con obiettivi e requisiti comuni.

Gli attori della filiera cloud e data center

Un Data Center è definito come un edificio che ospita un'infrastruttura IT dedicata alla creazione, esecuzione, archiviazione e fornitura di dati, applicazioni e servizi, supportata da macchinari meccanici ed elettrici che ne garantiscono l'operatività.

Queste infrastrutture si articolano in tre layer principali, ciascuno supportato da diversi attori della filiera:

• Infrastruttura abilitante: comprende le strutture fisiche di proprietà dei provider, come edifici e sistemi fondamentali per il funzionamento del Data Center, tra cui il condizionamento, le utility e i sistemi di sicurezza fisica. Gli attori coinvolti includono produttori di componentistica (rack unit, sistemi elettrici, gruppi elettrogeni, gruppi di continuità, Power Distribution Unit), produttori di sistemi di raffreddamento e sicurezza antincendio, general contractor, costruttori, società di ingegneria e progettazione, aziende di logistica, cablaggio e networking, oltre ai fornitori di energia.

- Infrastruttura IT: include le infrastrutture IT fisiche e virtualizzate necessarie per l'erogazione di applicazioni e servizi digitali ai clienti. Gli attori coinvolti comprendono produttori di hardware IT (server), società di telecomunicazioni e carrier, vendor di soluzioni di cybersicurezza e aziende specializzate nello smaltimento e riciclo dell'hardware.
- Servizi digitali a valore aggiunto: riguarda l'offerta di applicazioni e servizi in Cloud e
 hosting destinati ai clienti. Gli attori principali di questo livello sono i cloud provider, gli
 internet exchange, le software house, i service provider, i system integrator e le società di
 consulenza.

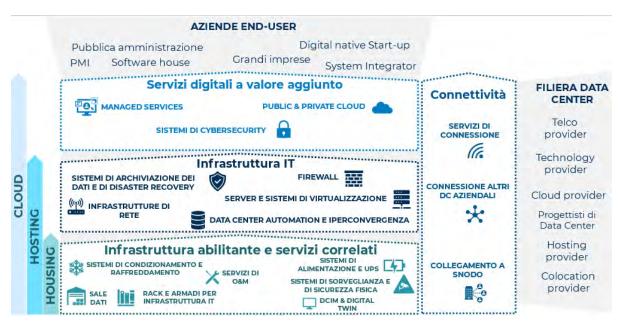


Figura 1 - Gli attori della filiera Data Center

Questa struttura multilivello evidenzia la complessità e la centralità dei Data Center nel panorama tecnologico italiano, sottolineando il ruolo chiave di questi hub nella trasformazione digitale del Paese.

Considerando quelli che sono i principali attori che operano nei layer più alti, quelli quindi afferenti al mondo Cloud, troviamo:

- Cloud Service Provider, ovvero quelle aziende che offrono infrastrutture, piattaforme e software in modalità Cloud. Queste aziende offrono servizi di Cloud Computing sulle loro infrastrutture, consentendo agli utenti di accedere a risorse IT scalabili e on-demand tramite Internet.
- System Integrator, attori fondamentali nella personalizzazione e nell' integrazione delle soluzioni Cloud con i servizi IT esistenti.
- Società di consulenza, che in maniera analoga ai System integrator supportano le aziende nella scelta e nell'implementazione del modello più adatto.
- Software House, ovvero gli sviluppatori di hypervisor, sistemi operativi e sistemi di gestione.

• Security Providers, ovvero quelle aziende che offrono soluzioni e sistemi di Cybersecurity per ambienti Cloud.

Ci sono poi degli attori non facenti parte della filiera, ma che rivestono comunque un ruolo fondamentale. Un esempio è quello dei regolatori, ovvero quegli enti e organismi che definiscono standard e normative per garantire sicurezza, privacy e conformità. Tra essi ci sono autorità di protezione dei dati (come il GDPR), autorità di standardizzazione e, infine, enti di certificazione (come CSA, Cloud Security Alliance). In questo campo particolare una forte attenzione è messa sul tema della Cloud Security, che riveste un ruolo centrale nell'adozione di questi modelli. Spesso poi, le regolamentazioni cambiano tra aree geografiche e, a volte, anche tra i singoli stati. Un esempio emblematico in quest'ambito è la presenza del GDPR in Europa, regolamento che invece non è presente sul suolo americano e cinese.

Il mercato data center: la situazione in Italia e in Lombardia

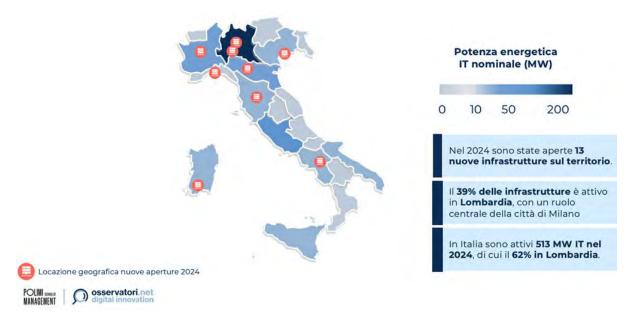


Figura 2 - Le nuove aperture di Data Center in Italia nel 2024

L'evoluzione del mercato Cloud e, più in generale, di tutti i mercati digitali ha avuto un impatto significativo sullo sviluppo delle infrastrutture Data Center. Nell'ultimo anno, il numero di Data Center attivi in Italia è cresciuto sensibilmente, passando da 173 nel 2023 a 186 nel 2024. Questo aumento riflette sia l'interesse crescente di investitori italiani e internazionali verso il nostro Paese, sia la volontà degli operatori già presenti di espandere la propria rete di infrastrutture.

L'ecosistema dei Data Center in Italia è caratterizzato da una forte concentrazione di infrastrutture in Lombardia, con la città metropolitana di Milano che si conferma come principale hub del Paese. Proseguendo verso il centro, si distingue l'area di Roma, mentre altre regioni, come Liguria, Emilia-Romagna, Veneto e Campania, stanno registrando interessanti sviluppi infrastrutturali

Questo modello riflette dinamiche simili a quelle osservate in altri Paesi europei avanzati. In Francia, ad esempio, Parigi rappresenta il polo principale e Marsiglia quello secondario; in Germania, Francoforte funge da hub primario, mentre Berlino si afferma come polo secondario.

Il trend delle nuove aperture è destinato a rafforzarsi nei prossimi anni, sostenuto sia dalla diffusione degli Edge Data Center, che riducono gradualmente il divario infrastrutturale in alcune regioni italiane, sia dall'espansione delle grandi infrastrutture Campus Data Center, concentrate nell'hub milanese.

La Lombardia sta consolidando il suo ruolo nell'ecosistema nazionale ed europeo grazie all'hub di Milano, che si afferma sempre più come fulcro della filiera dei Data Center. Attualmente, 22 player gestiscono infrastrutture nell'area metropolitana di Milano, per un totale di 238 MW installati. La città detiene da sola il 47% dei MW IT nominali installati in Italia e continua ad attrarre investimenti significativi, con previsioni di ulteriore crescita nei prossimi due anni.

Milano si candida quindi a diventare un nuovo centro gravitazionale del calcolo a livello europeo, grazie a vari fattori: un tessuto economico florido con 27 distretti industriali; la concentrazione di sedi nazionali di grandi Tech Provider e Cloud Provider; la presenza di un forte settore bancario e assicurativo, promotore della domanda di servizi digitali a bassa latenza; e investimenti infrastrutturali significativi, come i 1,3 miliardi di euro annunciati da Terna per l'espansione della rete elettrica in Alta Tensione.

Inoltre, Milano beneficia di caratteristiche morfologiche favorevoli, essendo al riparo da rischi sismici, e di un'ampia disponibilità di spazi industriali riconvertibili in Data Center. Esempi rilevanti includono Cyrus One negli spazi del C.I.S.E., Aruba presso l'ex cotonificio Legler e Data4 negli ex stabilimenti Italtel.

La crescita delle infrastrutture è trainata dai Data Center ad Alta Potenza, che richiedono allacciamenti alle reti di alta tensione e sono concentrati per il 70% nell'area milanese. Tuttavia, questo rapido sviluppo solleva interrogativi sulla sostenibilità della rete elettrica italiana. Le richieste a Terna per oltre 19,7 GW da dedicare ai Data Center, pari a 38 volte la potenza IT attualmente attiva, sono in gran parte concentrate su Milano, con il rischio di saturazione della rete e rallentamento dei progetti concreti.

Alcuni Paesi hanno già adottato politiche per limitare le aperture di nuove infrastrutture o incentivare la costruzione basata sull'autogenerazione. In Irlanda, ad esempio, nel 2023 il consumo energetico dei Data Center ha superato quello di tutte le abitazioni del Paese, portando le autorità a rivedere i piani di espansione. Nel 2024, Google non ha potuto costruire il suo terzo hub nel Paese poiché non garantiva un uso sufficiente di fonti rinnovabili per rispettare gli obiettivi di sostenibilità stabiliti.

Le fasi di apertura di un data center

I Data Center rappresentano un'infrastruttura critica per il paese: abilitare un percorso trasparente ed efficiente per l'apertura di nuovi asset in Italia risulterà cruciale nei prossimi anni per attrarre sempre maggiori investimenti.

Ad oggi, non esiste un percorso regolamentare e approvativo specifico, non essendo il Data Center inquadrato a livello normativo come una specifica tipologia di infrastruttura, al pari di quelle industriali.

Questo genera una scarsa conoscenza e comprensione del tema negli enti locali e territoriali, che ricoprono però un ruolo chiave nell'iter costruttivo di un Data Center. Nonostante l'Italia abbia fatto grandi passi avanti nelle strategie governative sul tema, basti pensare alla Strategia Cloud Nazionale e alla razionalizzazione dei Data Center della PA, queste non si sono poi riflesse in un piano d'azione a livello regolamentare

Figura 3 - Le fasi di apertura di un Data center

La prima fase di progettazione si declina in due attività distinte: da un lato la valutazione dei parametri di business che l'azienda costruttrice dovrà prendere in considerazione nella scelta della macroarea di costruzione, tra cui le necessità riguardanti il settore in cui opera (es. obbligo a mantenere i dati in Italia), la vicinanza a centri strategici (es. bacino di utenti dell'azienda) e il tessuto economico della zona.

Dall'altro, l'analisi e la due diligence del sito in cui verrà costruito il Data Center, con la valutazione di parametri ben precisi, valutati anche in ottica di un futuro conseguimento di certificazioni. Due importanti aspetti da prendere in considerazione riguardano inoltre la disponibilità di energia elettrica sul territorio e di connettività dell'infrastruttura. In particolare, la disponibilità di energia elettrica, soprattutto nel caso di alta tensione, richiede l'interazione con organismi pubblici e causa allungamenti dei tempi di progetto.

Per la seconda fase, quella dell'interazione con gli enti territoriali, il comune è l'ente con cui avvengono le principali interazioni, ma a seconda della dimensione del Data Center e delle caratteristiche del territorio, possono essere coinvolti anche enti sovracomunali, quali la Provincia o la Regione, oppure organi nazionali remoti, come gli enti paesaggistici e l'aviazione.

Dopo l'ottenimento dei permessi necessari, può quindi iniziare la fase di costruzione vera e propria del building, ulteriormente suddivisa in quattro sottofasi, che vedono il design dell'infrastruttura, l'appalto all'azienda costruttrice, l'approvvigionamento dei materiali e l'avvio del cantiere di

costruzione. Infine, una volta costruito, inizia la fase di collaudo dell'edificio, in cui vengono verificati gli aspetti di funzionamento e di sicurezza del building, con il coinvolgimento di enti locali ed enti certificatori esterni, nell'ottica di un possibile conseguimento di certificazioni TIER come ANSI-TIA e Uptime.

L'ultimo passo per portare a termine la costruzione di un Data Center consiste nel popolamento del building con i rack e la connettività necessari al corretto svolgimento delle operazioni e i successivi controlli, con anche in questo caso un ruolo centrale, tra gli altri, degli enti certificatori.

Il mercato cloud

Passando al mercato Cloud, nel 2025 le forti tensioni geopolitiche hanno riportato la sovranità digitale al centro del dibattito europeo, con l'UE impegnata a ridurre la dipendenza dai grandi fornitori tecnologici americani e a promuovere un ecosistema autonomo, soprattutto nei settori strategici come l'intelligenza artificiale. Per promuovere un ecosistema europeo, l'UE si sta muovendo in due direzioni: regolamentazione del mercato e politiche industriali, come l'AI Continent Action Plan¹.

In questo contesto, il mercato Cloud italiano continua a crescere e registra un aumento del +20%, raggiungendo un valore di 8,13 miliardi di euro. Il leggero rallentamento rispetto al 2024 (in cui si registrava un +23%) riflette un approccio più cauto da parte delle grandi organizzazioni, influenzato dal contesto geopolitico, dalla stretta normativa europea sulla cybersecurity e dal dibattito sulla sovranità digitale.

La dinamica di crescita positiva del 2025 è guidata dal Public Cloud & Hybrid Cloud, che cresce del +21%, ma il dato più rilevante è il forte incremento del Private Cloud (+23%, +14 p.p. di crescita rispetto al 2024), sostenuto dall'offerta dei provider per rispondere alla crescente domanda di controllo e sovranità sul dato. Iniziano a emergere offerte specifiche di Cloud sovrano, proposte sia da provider nazionali sia da player internazionali, che fanno sempre più parte anche del linguaggio commerciale e delle strategie di posizionamento sul mercato. Prosegue con un andamento positivo e in linea con la dinamica degli scorsi anni la Data Center Automation, con un tasso di crescita del +12%.

All'interno del Public & Hybrid Cloud, lo IaaS si conferma la componente principale, con una spesa stimata di 2,6 miliardi di euro nel 2025 (+23% rispetto al 2024), e una quota pari al 45% del mercato complessivo. La domanda è trainata soprattutto dalle Virtual Machine per ambienti di sviluppo e produzione, che continuano a costituire un pilastro delle strategie infrastrutturali delle imprese anche per applicazioni di AI.

Il SaaS raggiunge i 2,2 miliardi di euro, (+19% rispetto al 2024) e una quota di mercato del 38%. Il segmento è spinto dall'adozione di soluzioni di IT Security e analytics, sostenute dalla normativa NIS2, e dall'integrazione di funzionalità di AI nelle piattaforme aziendali.

Il PaaS, pur rappresentando la componente più piccola del mix, registra una crescita significativa (+21% rispetto al 2024), superando il miliardo di euro e coprendo il 17% del mercato complessivo.

-

¹ https://commission.europa.eu/topics/eu-competitiveness/ai-continent en

Il principale driver è la crescente adozione di funzionalità di AI e modelli generativi fondazionali, resi fruibili tramite API e utilizzati per potenziare gli applicativi aziendali.

Nel complesso, l'Intelligenza Artificiale rimane il principale driver di crescita del mercato Cloud italiano, anche se con un ritmo leggermente più moderato rispetto all'exploit del 2024. In parallelo, aumenta la centralità della cybersecurity come leva strategica di investimento, in un contesto dove resilienza, compliance e innovazione tecnologica diventano sempre più interconnessi.

Anche la spesa Cloud nella Pubblica Amministrazione continua a essere interessata da una crescita significativa, trainata dal proseguimento dei progetti di migrazione già avviati nell'ambito della Strategia Cloud Italia, tra cui rientra anche il Polo Strategico Nazionale, che mirano a modernizzare le infrastrutture e a garantire una maggiore sicurezza e sovranità dei dati.

A livello generale, oltre all'integrazione di tecnologie di intelligenza artificiale, si osserva una tendenza verso l'utilizzo del Cloud come principale modello di deployment per nuovi progetti digitali, come l'apertura di banche digitali e l'implementazione di servizi finanziari innovativi.

Il cloud come abilitatore di innovazione

Come emerge dai numeri di mercato, la tecnologia Cloud è ormai pervasiva nelle aziende italiane. Ormai tutte le grandi imprese adottano almeno un servizio Cloud e anche le PMI stanno seguendo questo approccio. Rappresenta oggi una tecnologia irrinunciabile all'interno del portafoglio informativo delle aziende, questo perchè riesce a soddisfare le esigenze economiche e funzionali delle organizzazioni. Tra i principali benefici attesi dall'adozione ci sono:

- Flessibilità architetturale, favorita dai paradigmi Cloud Native;
- Incremento della scalabilità e delle prestazioni delle applicazioni aziendali;
- Maggiore sicurezza e affidabilità;
- Aumento della qualità delle funzionalità offerte agli utenti;
- Importante riduzione del time to market della digitalizzazione, derivante dalla possibilità di accedere in maniera più rapida a tecnologie sofisticate.

Come detto precedentemente poi, il Cloud si sta distinguendo sempre di più come tecnologia abilitante dell'innovazione, ad esempio per l'Intelligenza Artificiale, di cui la nuvola è l'abilitatore fondamentale per lo sviluppo e l'implementazione. Infatti, le risorse computazionali necessarie per addestrare modelli complessi, analizzare dati in tempo reale e gestire applicazioni avanzate richiedono una capacità di calcolo che solo l'infrastruttura Cloud può offrire in modo scalabile e flessibile, abbattendo le barriere di costo iniziali e i tempi di sperimentazione. Inoltre, i servizi di piattaforma offrono strumenti e ambienti per lo sviluppo di sistemi di AI avanzati che ne semplificano la gestione lungo tutto il ciclo di vita, abbassando le barriere di competenze.

Il ruolo di "abilitatore di innovazione", però, non si ferma solo all'AI. Moltissimi trend tecnologici, come Internet of Things e Big Data, sono abilitati dal Cloud, che è un elemento chiave per introdurre innovazioni che altrimenti risulterebbero troppo onerose da realizzare internamente in termini di costi, tempi e competenze necessarie. Ma l'innovatività della nuvola non si limita solo alla parte tecnologica, è anzi una leva di flessibilità verso il cambiamento, poichè permette di aumentare l'agilità delle organizzazioni, consentendo così un migliore tempo di risposta al cambiamento.

Cloud come abilitatore di nuovi modelli di lavoro

Oltre a rivoluzionare l'infrastruttura tecnologica e a favorire l'innovazione, il Cloud ha avuto un impatto significativo sui modelli di lavoro all'interno delle organizzazioni. Non solo ha introdotto nuovi strumenti, ma ha anche promosso un cambiamento nel mindset aziendale, orientato verso la sperimentazione continua e la capacità di adattamento rapido ai mutamenti del mercato. Questo nuovo approccio si riflette nell'adozione diffusa delle metodologie Agile, che privilegiano cicli di lavoro brevi e iterativi, favorendo la flessibilità e la capacità di rispondere rapidamente alle esigenze emergenti.

In un contesto tecnologico in costante evoluzione, il Cloud è diventato l'elemento chiave per abilitare modelli di lavoro moderni come lo Smart Working e il Remote Working. Le infrastrutture e i software basati sulla nuvola permettono di lavorare da remoto su larga scala, facilitando la collaborazione a distanza e la condivisione in tempo reale delle informazioni. I servizi di Collaboration e supporto hanno rivoluzionato il modo in cui le aziende comunicano internamente, garantendo una connessione continua tra i team e assicurando la continuità operativa anche in situazioni di emergenza.

La flessibilità del Cloud supporta inoltre metodologie di lavoro dinamiche, consentendo alle organizzazioni di scalare rapidamente le risorse in base alle necessità operative. Tuttavia, questa evoluzione porta con sé nuove sfide, in particolare in termini di sicurezza informatica. I modelli di Smart e Remote Working riducono il controllo diretto sui dispositivi e sulle attività degli utenti, ampliando il perimetro di rischio per le aziende. Di conseguenza, è necessario sviluppare nuovi protocolli di sicurezza e acquisire competenze specifiche per gestire le vulnerabilità legate a questi ambienti distribuiti.

In sintesi, il Cloud non solo ha trasformato le infrastrutture tecnologiche delle imprese, ma ha anche ridefinito il modo in cui si lavora, promuovendo una maggiore agilità, collaborazione e capacità di adattamento alle sfide del futuro.

Esg ed impatti sociali ed ambientali

Il rapporto tra sostenibilità e soluzioni digitali si presenta come un equilibrio complesso. Da un lato, il digitale fornisce strumenti essenziali per monitorare e ridurre le emissioni, contribuendo agli obiettivi ambientali globali. Dall'altro, l'espansione delle infrastrutture digitali comporta un impatto ambientale significativo. Negli ultimi anni, le emissioni dei Data Center sono aumentate considerevolmente, soprattutto a causa dell'uso massiccio di Intelligenza Artificiale e AI generativa. Per dare un'idea, secondo uno studio della Commissione Europea, nel 2022 l'energia elettrica consumata nei Data Center nell'UE ricadeva in un range tra l'1.8% e il 2.6% del totale di energia elettrica utilizzata in UE, con un picco del 18% in Irlanda.²

Per mitigare questi effetti, sono state introdotte diverse normative e direttive volte a promuovere una maggiore sostenibilità e trasparenza. Il Decreto Legislativo 254/2016 impone alle grandi

-

² "Energy Consumption in Data Centres and Broadband Communication Networks in the EU", 2024 Kamiya G., Bertoldi, P. (https://publications.jrc.ec.europa.eu/repository/handle/JRC135926)

imprese l'obbligo di redigere annualmente una relazione di rendicontazione non finanziaria. La Direttiva "Corporate Sustainability Reporting" estenderà questo obbligo anche alle PMI quotate a partire dal 2026. Oltre a queste normative generali, esistono regolamenti specifici per il settore dei Data Center, come il "Climate Neutral Data Centre Pact" e il "Code of Conduct for Energy Efficiency in Data Centers", la cui adesione, sebbene volontaria, sta diventando un indicatore chiave di responsabilità ambientale.

In linea generale, l'adozione di tecnologie Cloud potrebbe anche aiutare a migliorare la postura di sostenibilità e, di conseguenza, gli indicatori ESG. Come prima cosa, in risposta a questo contesto normativo e alla crescente consapevolezza ambientale, i principali Cloud Provider e operatori di co-location stanno investendo in soluzioni per migliorare l'efficienza energetica dei Data Center. Questo include l'adozione di server ad alta efficienza e l'implementazione di metodologie avanzate di raffreddamento. Un altro aspetto cruciale riguarda il Life Cycle Assessment (LCA), che valuta l'impatto ambientale non solo durante il ciclo di vita operativo delle infrastrutture, ma anche nella fase di dismissione. L'uso di hardware modulare facilita la gestione del fine vita, poichè permette il riutilizzo di alcuni componenti e la riduzione nella produzione di rifiuti, riducendo quindi l'impatto ambientale complessivo.

Parallelamente, l'utilizzo di fonti rinnovabili per alimentare i Data Center è diventato una priorità. In questo ambito, gli Hyperscaler si distinguono per i progressi compiuti: Amazon, Google e Microsoft stanno lavorando per raggiungere nei prossimi anni la carbon neutrality

Per gestire efficacemente i rischi ambientali, è fondamentale adottare una strategia chiara di Green IT, che integri pratiche sostenibili a livello operativo e gestionale. La scelta di fornitori attenti alle tematiche green gioca un ruolo determinante nella riduzione delle emissioni aziendali. Inoltre, l'adesione a programmi di Carbon Neutrality e a standard o certificazioni specifiche contribuisce a garantire un impatto ambientale contenuto. Anche aspetti apparentemente minori, come l'uso di packaging riciclato o proveniente da fonti rinnovabili per le infrastrutture IT, possono fare la differenza.

Dal punto di vista sociale, il Cloud rappresenta un potente abilitatore della trasformazione digitale, favorendo un accesso più equo alle risorse tecnologiche avanzate, anche in aree geografiche meno sviluppate economicamente e tecnologicamente. I modelli as-a-service riducono le barriere all'ingresso, consentendo anche a PMI e enti non-profit di sfruttare le opportunità offerte dalla digitalizzazione. Infatti, essi permettono ad aziende che non hanno le risorse necessarie da dedicare all'IT di accedere a tecnologie all'avanguardia e più sicure, dalle quali altrimenti sarebbero escluse. Per fare ciò, spesso una buona parte delle competenze e della manutenzione viene delegata al fornitore, ma si ha così la possibilità di essere nelle condizioni di competere in uno scenario internazionale. In questo contesto risulta quindi importantissima la conoscenza dell'offerta dei fornitori, in modo da poter scegliere la più adattta al contesto, e la relazione con essi.

Tuttavia, con l'aumento delle soluzioni Iaas, Paas e Saas emergono nuove sfide legate alla sovranità dei dati: le aziende devono garantire che l'adozione del Cloud non comprometta la privacy e la sicurezza delle informazioni sensibili.La sicurezza dei dati è strettamente connessa alla sovranità, poiché i Cloud Provider gestiscono enormi volumi di informazioni. Una corretta gestione degli accessi e l'adozione di protocolli di sicurezza adeguati sono fondamentali per proteggere questi dati. In definitiva, il Cloud non solo contribuisce alla sostenibilità ambientale, ma gioca anche un ruolo cruciale nella promozione di una trasformazione digitale inclusiva e sicura.

I principali rischi del cloud

Nonostante i numerosi vantaggi evidenziati finora, l'adozione del Cloud Computing presenta anche alcune criticità che le aziende devono considerare attentamente. Uno dei principali punti deboli riguarda la gestione dei costi. La flessibilità del Cloud, sebbene rappresenti un punto di forza, comporta un modello di spesa variabile basato su logiche Opex (Operating Expenditure), in contrasto con il tradizionale approccio Capex (Capital Expenditure) dell'IT. Questo modello può portare a costi imprevedibili e potenzialmente onerosi se non gestito correttamente.

Per affrontare questa sfida, negli ultimi anni si è assistito a una crescente adozione delle metodologie FinOps (Cloud Financial Management). Queste pratiche permettono di monitorare e ottimizzare le spese legate al Cloud, massimizzando il valore degli investimenti e migliorando la collaborazione tra team tecnici e finanziari. Secondo i dati dell'Osservatorio Cloud Transformation, la gestione dei costi Cloud è diventata la principale preoccupazione per i manager delle grandi imprese nel 2024. Tra le principali attività coinvolte in questa fase, c'è la fase di pianificazione del budget, il monitoraggio delle spese Cloud, l'allocazione dei costi alle singole business unit, l'implementazione di strategie per limitare i costi e la definizione di KPI per monitorare l'andamento delle spese rispetto al budget.

Le leve principali per una gestione efficace dei costi includono la collaborazione tra IT, Finance e Business, l'automazione dei processi attraverso strumenti dedicati e una solida governance con ruoli e responsabilità chiaramente definiti. Le competenze in ambito FinOps sono sempre più richieste, con attività che spaziano dalla gestione delle risorse Cloud all'ottimizzazione del portafoglio di servizi.

Gli strumenti utilizzati per il controllo dei costi includono soluzioni offerte direttamente dai Cloud Provider, che facilitano la visibilità e l'allocazione delle spese tra le business unit. Oltre a questi, esistono piattaforme specifiche per l'ottimizzazione e il controllo dei costi, nonché strumenti per la collaborazione e la responsabilizzazione finanziaria tramite Showback e Chargeback.

Oltre ai costi, un'altra criticità riguarda la concentrazione del mercato nelle mani di pochi attori. I tre principali provider – Amazon, Google e Microsoft – detengono oltre il 70% del mercato Cloud in Italia, una situazione che potrebbe consolidarsi ulteriormente nei prossimi anni. Questo oligopolio rischia di ridurre la concorrenza e aumentare il rischio di lock-in, ovvero la difficoltà di migrare da un provider all'altro a causa di costi di uscita elevati, noti come "egress fees", e del fatto che i servizi vengano costruiti sulle tecnologie di vendor specifici, dalle quali è poi difficile cambiare.

Infine, il tema della sicurezza rappresenta una sfida cruciale. L'adozione del Cloud modifica il perimetro di difesa delle aziende, richiedendo nuovi approcci alla cybersecurity. Inoltre, la scarsa integrabilità dei servizi Cloud con i sistemi informativi esistenti può rappresentare un ulteriore ostacolo all'adozione efficace della nuvola.

In conclusione, sebbene il Cloud rappresenti una rivoluzione per il mondo IT e aziendale, la sua gestione richiede un'attenta pianificazione e lo sviluppo di competenze specifiche, non solo tecniche ma anche finanziarie e strategiche.

L'impatto sulle competenze manageriali

Alla luce di quanto detto nei capitoli precedenti, l'adozione massiva del Cloud Computing e la crescente centralità dei Data Center stanno trasformando radicalmente il panorama delle competenze richieste ai manager. Questa evoluzione impone una visione più ampia e multidisciplinare, che integri competenze tecniche, strategiche e gestionali per garantire una governance efficace delle nuove infrastrutture digitali.

Uno dei principali cambiamenti riguarda l'adozione di nuove metodologie di lavoro, come ad esempio l'Agile e il DevOps, che stanno diventando imprescindibili per rispondere con rapidità alle esigenze di business. I manager devono quindi sviluppare un mindset flessibile e adattivo, in grado di gestire processi iterativi e cicli di sviluppo più brevi, con un focus sull'ottimizzazione continua e sulla sperimentazione. In questo contesto, la collaborazione tra i reparti IT e le altre funzioni aziendali è fondamentale per massimizzare il valore delle soluzioni digitali e garantire una maggiore integrazione tra tecnologia e business.

Parallelamente, cresce la necessità di competenze in ambito FinOps (Cloud Financial Management). La gestione dei costi legati al Cloud richiede una comprensione approfondita dei modelli di pricing e delle strategie di ottimizzazione, per evitare sprechi e garantire un uso efficiente delle risorse. I manager devono acquisire strumenti analitici avanzati per monitorare la spesa Cloud in tempo reale e implementare strategie di showback (Monitoraggio dei costi Cloud delle singole Business Units, ma senza allocare poi i costi. Serve per dare trasparenza sui costi delle singole unità) e chargeback (Monitoraggio e allocazione dei costi Cloud alle singole Business unit, col fine di promuovera una maggior responsabilità finanziaria), migliorando la trasparenza e la responsabilizzazione finanziaria delle singole unità di business.

Un altro elemento cruciale è la Cybersecurity, che assume un ruolo sempre più centrale con la crescente adozione del Cloud. La sicurezza dei dati, la gestione degli accessi e la conformità alle normative (come il GDPR in Europa) richiedono una conoscenza approfondita dei rischi e delle soluzioni di protezione più efficaci. I manager devono quindi saper bilanciare innovazione e sicurezza, sviluppando una strategia proattiva di gestione del rischio informatico.

L'aspetto normativo diventa anch'esso un fattore determinante. Con l'evoluzione delle regolamentazioni internazionali in materia di protezione dei dati e sostenibilità (ad esempio la Corporate Sustainability Reporting Directive - CSRD), i leader aziendali devono acquisire competenze relative alla compliance e alla governance, garantendo che l'adozione del Cloud sia allineata agli standard di sicurezza, trasparenza e sostenibilità richiesti dai mercati. Inoltre, per quanto riguarda la parte legata al mondo dei Data Center, è cruciale avere delle competeze legate al rapporto con le istituzioni, vista la difficoltà di ottenere i permessi per la loro costruzione.

Infine, il Cloud sta ridefinendo le competenze legate alla gestione delle risorse umane e della collaborazione. Con il consolidarsi dello smart working e del remote working, i manager devono sviluppare nuove strategie di leadership per gestire team distribuiti e assicurare la continuità operativa. Le soft skills come la comunicazione efficace, la gestione del cambiamento e il problem solving diventano sempre più rilevanti per garantire il successo delle organizzazioni nell'era digitale

In sintesi, l'adozione del Cloud ha trasformato non solo l'infrastruttura IT, ma anche le competenze richieste ai manager. La flessibilità, la collaborazione e la gestione strategica delle risorse digitali

sono diventate competenze chiave per affrontare le sfide di un mondo sempre più digitale e interconnesso. La capacità di adattarsi ai cambiamenti tecnologici, implementare metodologie Agile e ottimizzare le risorse attraverso il FinOps non è più un vantaggio competitivo, ma una necessità per garantire la sostenibilità e l'efficienza delle organizzazioni nel lungo periodo.

Il Cloud, quindi, non rappresenta solo un'evoluzione tecnologica, ma una trasformazione culturale che i manager devono saper guidare. Bilanciare innovazione, sicurezza e controllo dei costi è fondamentale per affrontare le sfide di un ambiente aziendale in continua evoluzione. Nei prossimi capitoli, approfondiremo il tema delle competenze manageriali in ambito Cloud e Data Center, sviluppando un modello ad hoc per supportare i leader aziendali in questo percorso

Una volta delineato con chiarezza lo scenario attuale che caratterizza il mondo del Cloud, dei Data Center e, più in generale, dell'intero ecosistema IT, possiamo finalmente procedere con la costruzione di un modello di competenze specifico. Questo modello ha l'obiettivo di individuare e spiegare quali sono le principali competenze richieste ai manager che operano nel settore IT. Prima di entrare nel dettaglio delle competenze stesse, è però fondamentale dedicare un paragrafo ad una breve introduzione che chiarisca le fasi e le modalità con cui questo modello è stato sviluppato e strutturato.

3. IL MODELLO

Fonti e lavoro introduttivo

Come detto, il lavoro svolto si concentra sulla costruzione di un modello per l'analisi delle competenze digitali nel contesto lavorativo, partendo da un framework consolidato e internazionale, il "Digital E-Competences Framework", sviluppato dall'Unione Europea. Questo modello si concentra sulle competenze Digitali in generale, senza avere un focus specifico sulla parte manageriale. A questo si sono poi aggiunti altri strumenti di analisi, come il database "O Net", che raccoglie competenze per una vasta gamma di ruoli professionali, e il modello "DigComp 2.1", che fornisce un quadro delle competenze digitali a livello nazionale. La ricerca ha incluso anche riferimenti all'"Emotional Intelligence Quadrant" di Daniel Goleman per le soft skills.

In aggiunta, sono stati utilizzati materiali specifici degli Osservatori Digital Innovation del Politecnico di Milano, con focus sugli Osservatori Cloud e Data Center, per integrare le competenze tecniche. Un'importante fase del processo è stata la validazione qualitativa tramite interviste a esperti del settore, seguita da un'indagine quantitativa attraverso una survey, il cui campione include 40 aziende, con sedi nelle provincie di Milano, Monza e Pavia, per raccogliere dati pertinenti e assicurare l'attendibilità della ricerca.

Per un maggiore dettaglio sulla metodologia si rimanda alla "Nota Metodologica".

Il modello per le competenze manageriali

Da un punto di vista strutturale, il modello è stato progettato e sviluppato su due dimensioni: i diversi livelli manageriali presenti all'interno delle organizzazioni e le competenze necessarie ai manager stessi nel contesto IT.

Per quanto il livello organizzativo, si è scelto di semplificare e categorizzare la figura del manager, che è naturalmente molto ampia e diversificata, in tre distinti livelli, ordinati secondo un crescente grado di responsabilità e complessità:

- **Project Manager**: Gestisce operativamente i progetti, assicurandosi che le attività siano eseguite secondo piani e tempi stabiliti, gestendo direttamente le risorse coinvolte.
- **Middle manager**: Coordina, pianifica e supervisiona team e progetti, traducendo le strategie in azioni concrete e operative, mantenendo una visione complessiva delle attività.
- C-level: Definisce la visione aziendale, le politiche strategiche e indirizza l'organizzazione, influenzando la direzione futura dell'azienda o della divisione IT.

Il modello mette in evidenza come le competenze richieste ai manager possano variare in modo significativo a seconda del livello gerarchico e delle responsabilità assegnate. In particolare, a livello operativo, il Project Manager ha un ruolo centrale nella gestione quotidiana delle attività e dei progetti. La sua responsabilità principale è garantire che le attività vengano eseguite secondo piani precisi e nei tempi stabiliti, gestendo in modo diretto le risorse coinvolte. Un esempio tipico

è rappresentato dall'IT Project Manager, che deve assicurarsi che gli obiettivi di progetto siano raggiunti con successo.

Al livello intermedio, il Middle manager svolge funzioni più complesse di coordinamento, pianificazione e supervisione. Questo ruolo implica la gestione di team più ampi e la supervisione di molteplici progetti o iniziative, traducendo le strategie definite a livelli superiori in azioni concrete e operative. Esempi tipici sono l'IT Manager, l'Head of Cloud o l'Information Security Manager, che devono mantenere una visione complessiva delle attività e garantire il corretto funzionamento delle diverse unità operative.

Infine, ai vertici dell'organizzazione troviamo i manager C-level, come CIO, CTO o CISO, che hanno responsabilità strategiche e di lungo termine. Questi ruoli non si limitano alla gestione operativa ma si occupano della definizione della visione aziendale, della formulazione delle politiche strategiche e dell'indirizzamento complessivo dell'azienda o della divisione IT. Le loro decisioni influenzano l'intero ecosistema aziendale, contribuendo a determinare la direzione futura dell'organizzazione.

Per quanto riguarda la dimensione delle competenze, sono state individuate le principali competenze richieste ai manager in ambito IT, derivanti dalle fonti e dagli studi precedentemente citati. Nel dettaglio, sono state identificate 14 competenze chiave, suddivise in due macro-aree principali: competenze tecniche e competenze trasversali. Questa distinzione sottolinea l'importanza di una preparazione diversificata, in cui i manager IT devono possedere sia conoscenze tecniche specifiche sia abilità più generali e applicabili a molteplici contesti manageriali.

Competenze Tecniche

Le competenze tecniche rappresentano il cuore delle conoscenze richieste ai manager IT e comprendono una vasta gamma di abilità specialistiche. Tra queste, assumono un ruolo di primo piano le competenze relative alla gestione delle infrastrutture tecnologiche, come ad esempio le capacità di Cloud Operations e la gestione delle architetture IT, riflettendo così l'importanza crescente che le soluzioni cloud stanno assumendo all'interno delle organizzazioni e la necessità di governare efficacemente le risorse digitali.

Un altro ambito fondamentale è rappresentato dal Data Management e dall'Analytics, che richiedono competenze specifiche nella raccolta, nell'analisi e nell'utilizzo dei dati a supporto di decisioni basate su evidenze oggettive. In un contesto sempre più guidato dai dati, queste capacità sono diventate imprescindibili.

Parimenti, le competenze legate alla sicurezza informatica e alla compliance normativa assumono un'importanza cruciale, vista la crescente frequenza e sofisticazione degli attacchi cyber e la necessità di rispettare normative sempre più stringenti a livello internazionale.

Non meno rilevanti sono le competenze di sviluppo software e la conoscenza dell'offerta IT, che permettono al manager di comprendere e governare non solo l'infrastruttura tecnologica, ma anche l'evoluzione delle applicazioni e dei sistemi software che supportano le attività aziendali.

Competenze Trasversali

Le competenze trasversali, invece, sono abilità fondamentali per tutti i manager, indipendentemente dal settore di appartenenza, e rappresentano un bagaglio indispensabile per una gestione efficace e strategica.

Tra queste, la gestione finanziaria è essenziale per prendere decisioni informate riguardo ai budget e all'allocazione delle risorse, garantendo la sostenibilità economica delle iniziative. L'innovazione è un'altra competenza chiave, che consente di introdurre idee e soluzioni nuove, stimolando il miglioramento continuo e l'adattamento ai cambiamenti del mercato.

La capacità di collaborazione e di interlocuzione con soggetti esterni è indispensabile per gestire relazioni complesse con stakeholder, fornitori e partner strategici, mentre la gestione e lo sviluppo del capitale umano sono fondamentali per attrarre, motivare e trattenere i talenti all'interno dell'organizzazione.

Anche il project management rappresenta una competenza trasversale fondamentale, necessaria per garantire che i progetti, spesso complessi, siano portati a termine con successo, rispettando tempi, costi e obiettivi.

Infine, il change management è una competenza critica in un contesto aziendale e tecnologico in continua evoluzione, che permette ai manager di guidare l'organizzazione attraverso processi di trasformazione e adattamento.

In sintesi, mentre le competenze tecniche si concentrano su ambiti specifici e altamente specialistici, le competenze trasversali forniscono una preparazione più ampia e integrata, indispensabile per affrontare efficacemente le molteplici sfide manageriali. Un manager di successo deve quindi essere in grado di bilanciare e integrare entrambe queste aree, possedendo una solida base tecnica e un ampio ventaglio di abilità trasversali che gli consentano di operare in modo strategico, flessibile ed efficace.

Nell'immagine seguente è possibile vedere una sintesi visiva di quelle che sono le competenze evidenziate nei paragrafi precedenti:

Figura 4 – Il modello: competenze tecniche e trasversali

La matrice finale del modello, che verrà illustrata successivamente, mostra come queste competenze si declinano e si articolano nei diversi livelli manageriali. È importante però fare alcune precisazioni. Il modello, così come costruito, tende a rappresentare una crescita verticale nella carriera manageriale, ignorando in parte la possibilità di un'evoluzione orizzontale. Nella realtà, infatti, ogni figura manageriale necessita di sfumature e differenze specifiche nelle competenze, motivo per cui lo stesso tipo di competenza può presentare livelli diversi di approfondimento e applicazione a seconda del ruolo.

Ad esempio, non è detto che un manager C-level debba possedere allo stesso modo competenze applicative molto dettagliate, come la scrittura di codice, che invece possono essere fondamentali per un Project Manager o un Middle manager. Questa distinzione sottolinea l'importanza di adattare il profilo delle competenze al contesto specifico e al livello di responsabilità.

Un'altra assunzione di base è che ciascuna delle 14 competenze individuate sia sufficientemente distinta e definita. Tuttavia, nella pratica, alcune competenze possono sovrapporsi parzialmente, come ad esempio quelle relative alla scrittura del codice e al Cloud Ops, oppure quelle legate all'innovazione e alla gestione del cambiamento. La scelta di mantenere una lista chiara e distinta delle competenze è stata fatta per garantire chiarezza e completezza, cercando di evitare sovrapposizioni inutili e facilitare l'analisi e l'applicazione del modello.

Le aree del modello

Il modello proposto descrive l'evoluzione delle competenze digitali e manageriali su tre livelli di responsabilità crescente: operativo (Project Manager), gestionale (IT Manager) e strategico (C-level). Per ciascuna competenza, il modello definisce il livello di maturità atteso nei diversi ruoli organizzativi, offrendo così una chiara visione dei percorsi di sviluppo e delle aspettative professionali.

Partendo dalle **competenze di Cloud Operations**, queste includono tutte le attività correlate a DevOps, FinOps e SecOps. Al Project Manager è richiesto di applicare concretamente metodologie come DevOps e FinOps nello sviluppo e nella gestione dei sistemi cloud. L'IT Manager, invece, supervisiona le operazioni di progetto o area, monitorando KPI e SLA e intervenendo in caso di deviazioni. A livello C-level, la responsabilità si sposta alla pianificazione strategica, definendo la Cloud Strategy e promuovendo pratiche avanzate come DevSecOps, garantendo l'allineamento con la visione aziendale.

Nel campo della **Gestione delle Architetture IT**, si considerano le competenze legate alla progettazione, implementazione e gestione dell'architettura tecnologica aziendale, assicurandone coerenza, efficienza e allineamento strategico. Il Project Manager si occupa dell'uso operativo di strumenti per la configurazione degli ambienti e la risoluzione di problemi, mentre l'IT Manager gestisce infrastrutture complesse, inclusi ambienti ibridi e integrazione di sistemi legacy. Il C-level definisce le scelte strategiche architetturali, valutando l'opzione tra ambienti cloud e on-premise e pianificando migrazioni basate su business case.

Le competenze di Data Management e Analytics comprendono la capacità di raccogliere, organizzare, analizzare e interpretare dati per generare insight a supporto delle decisioni aziendali, includendo sia la gestione dello storage sia l'analisi ed elaborazione, con particolare attenzione all'Intelligenza Artificiale. Il Project Manager applica strumenti per l'archiviazione e l'elaborazione dati (ad esempio SQL, Python). L'IT Manager guida progetti di Advanced Analytics e AI, mentre il C-level definisce la strategia aziendale sui dati, selezionando priorità d'investimento e soluzioni AI da adottare.

Le competenze sulla sicurezza e la compliance normativa riguardano le conoscenze e le pratiche necessarie a garantire la protezione dei sistemi e dei dati aziendali nel rispetto delle normative e degli standard di settore. Il Project Manager deve saper utilizzare strumenti di sicurezza informatica e cloud (ad esempio IAM, crittografia), l'IT Manager identifica i rischi e definisce requisiti di sicurezza (ad esempio tramite SIEM), mentre il C-level valuta i rischi in base alle priorità aziendali e pianifica strategie di resilienza e risposta agli incidenti.

Per quanto riguarda lo **sviluppo software**, le competenze coinvolgono la progettazione, scrittura, test e manutenzione di codice per applicazioni funzionali e scalabili. Il Project Manager traduce i requisiti in piani operativi, conoscendo processi e metodologie di sviluppo. L'IT Manager definisce architetture software (microservizi, API, ecc.) e linee guida, monitorando la qualità del codice. Il C-level stabilisce le strategie software, valutando opzioni make or buy, innovazione e governance dei processi.

Le competenze sull'offerta IT riguardano la conoscenza aggiornata delle soluzioni presenti sul mercato, necessaria per valutare, selezionare e integrare le tecnologie più adatte al contesto aziendale. Il Project Manager utilizza gli strumenti forniti dai vendor (es. AWS, Azure), l'IT Manager esplora e introduce nuovi strumenti nel proprio ambito, mentre il C-level possiede una visione ampia delle offerte tecnologiche e pianifica il loro impiego in azienda.

Per la **gestione finanziaria**, le competenze riguardano la pianificazione, il monitoraggio e il controllo delle risorse economiche in relazione agli obiettivi aziendali e ai vincoli di budget. Il Project Manager utilizza strumenti di rendicontazione e controllo di progetto, inclusi quelli legati a FinOps; l'IT Manager definisce policy e interviene in caso di anomalie; il C-level è responsabile della pianificazione IT a livello macro, dialoga con il top management, definisce KPI e valuta decisioni strategiche di make or buy.

Le **competenze legate all'innovazione** riguardano l'attitudine a proporre e implementare soluzioni nuove, migliorative o disruptive, contribuendo alla trasformazione digitale e organizzativa. Il Project Manager si aggiorna sugli strumenti e le tecnologie emergenti; l'IT Manager gestisce progetti di introduzione tecnologica e formazione; il C-level svolge attività di scouting tecnologico e valuta costi e benefici per implementazioni concrete.

Per la **collaborazione e l'interlocuzione esterna**, si intendono le abilità di lavorare efficacemente in team e di relazionarsi con partner, fornitori e stakeholder esterni, facilitando comunicazione e sinergie. Il Project Manager interagisce all'interno del team e con altre funzioni aziendali; l'IT Manager ha relazioni più ampie, coinvolgendo top manager e stakeholder esterni; il C-level coordina con altri executive e si confronta con istituzioni ed enti.

Le **competenze sulla sostenibilità** riguardano conoscenze e sensibilità nell'integrare pratiche sostenibili nei processi aziendali, con attenzione agli impatti ambientali, sociali ed economici. Il Project Manager applica strumenti come GreenOps nei progetti; l'IT Manager integra la sostenibilità nei piani operativi; il C-level guida l'integrazione strategica della sostenibilità nella visione IT complessiva, valutando nuove iniziative green.

Le **competenze di Project Management** includono la capacità di pianificare, coordinare e monitorare progetti, gestendo risorse, tempi, rischi e obiettivi in modo strutturato ed efficace. Il Project Manager definisce obiettivi, roadmap e KPI per singoli progetti; l'IT Manager coordina progetti multipli e team, applicando metodologie di gestione; il C-level mantiene una visione sistemica, guida trasformazioni metodologiche (es. Agile) e assicura la coerenza strategica.

Le **competenze nella gestione del capitale umano** riguardano l'analisi dei bisogni formativi, il supporto alla crescita professionale e la valorizzazione delle competenze in azienda. Il Project Manager gestisce il team di progetto; l'IT Manager pianifica formazione, strumenti e metodi per le persone; il C-level orienta la cultura aziendale e indirizza il lavoro dei team verso obiettivi strategici.

Nel campo della **contrattualistica**, si fa riferimento alla conoscenza delle regole, clausole e processi per la redazione e gestione dei contratti, in particolare in ambito tecnologico e digitale. Il Project Manager conosce e rispetta i vincoli contrattuali; l'IT Manager contribuisce alla redazione di contratti e SLA; il C-level negozia e stipula contratti su larga scala, gestendo clausole critiche e rischi legali.

Infine, le **competenze di change management** riguardano la capacità di adattarsi rapidamente a trasformazioni organizzative, culturali e tecnologiche, e di supportare gli altri nel processo di trasformazione. Queste competenze, diverse dall'innovazione che riguarda tendenzialmente lo scouting di nuove tecnologie, si concentrano sul tema della gestione della transizione e del change management. Il Project Manager implementa il cambiamento a livello progettuale, supportando le persone nel superamento delle resistenze; l'IT Manager facilita il cambiamento con strumenti e piani operativi; il C-level guida e governa il cambiamento esercitando leadership e creando un ambiente favorevole alla trasformazione.

Per una visione in immagine del modello, è possibile consultare il sommario al capitolo 7

Le soft-skills

Per completare quanto evidenziato nei paragrafi precedenti, che riguardano le cosiddette Hard Skills, va considerata anche un'altra dimensione fondamentale di quelle che sono le competenze manageriali: le "soft skills".

Le soft skills sono quelle competenze legate più al mondo "personale" e "relazionale", che riguardano il modo in cui una persona interagisce con gli altri e affronta le situazioni lavorative o sociali. Alcuni esempi possono includere capacità come comunicazione efficace, team-work, problem solving, adattabilità, gestione del tempo, empatia e intelligenza emotiva. A differenza delle hard skills, che sono competenze tecniche e specifiche di un mestiere, le soft skills sono trasversali e fondamentali per lavorare bene in squadra, gestire relazioni e adattarsi ai cambiamenti.

In generale, per queste skills conta molto anche l'aspetto personale, caratteriale ed attitudinale, ma possono essere sicuramente allenate.

Considerando quanto emerso dalle interviste, per essere un buon manager queste competenze sono fondamentali, quasi al pari di quelle "hard". In particolare, sono cruciali quelle competenze legate al processo decisionale come il pensiero analitico, il problem-solving e la capacità di modellizzazione.

Oltre a ciò, sono cruciali anche tutte quelle competenze legate alla gestione del team (già in parte incluse nelle competenze di "gestione del capitale umano"), come la capacità di collaborazione, la capacità di gestione dei conflitti e la capacità di sviluppo dei propri collaboratori.

Infine, un gruppo cruciale di soft-skills è quello legato alla leadership. Infatti, per i manager di qualsiasi tipo è fondamentale la capacità di ispirare e "guidare" le persone, al netto dei diversi stili di leadership e dei tratti caratteriali.

All'interno del modello sviluppato, le soft-skills rappresentano una base le altre due aree di competenze, quelle tecniche e manageriali. Esse sono già in parte incluse nelle competenze che sono state classificate nel modello (soprattutto in quelle trasversali), ma alcuni aspetti, come appunto la capacità decisionale e la leadership, sono un punto fondamentale di appoggio, una base su cui poggiano tutte le altre competenze

4. RISULTATI

Una volta descritto e sviluppato il modello relativo alle competenze, è stata sviluppata una survey che andasse ad analizzare quelle che sono le competenze ritenute maggiormente necessarie dai manager IT. L'obiettivo è quello di indagare due aspetti:

- Quanto i rispondenti pensano di possedere attualmente una determinata competenza
- Quanto reputano importante, nel loro ruolo, una determinata competenza

Sostanzialmente, quindi, l'obiettivo è quello di indagare lo scostamento tra una situazione attuale (in termini di competenze possedute) e una situazione ideale per il proprio ruolo (vedendo l'importanza che si dà a quelle specifiche competenze).

Tramite questa doppia prospettiva, di conseguenza, l'idea è quella di identificare i principali bisogni formativi partendo dalle risposte delle persone direttamente coinvolte, ovvero i manager IT.

Per dare insight più dettagliati, sono state analizzate le risposte per "cluster" di manager, seguendo i 3 livelli presentati nel modello: Project Manager, Middle manager e C-level.

Infatti, questo approccio consente di identificare e analizzare i gap esistenti per ciascuna competenza, così da individuare le aree di maggiore debolezza, ovvero quelle caratterizzate da uno scostamento più marcato, e su cui prioritizzare gli interventi formativi.

Una volta conclusa la somministrazione della survey, i dati raccolti sono stati elaborati con l'obiettivo di identificare le competenze più critiche per i manager IT. A supporto della lettura dei risultati, sono stati predisposti una serie di grafici radar in grado di rappresentare visivamente i gap tra le diversi aree di competenza.

Il modello delle competenze è stato così ricondotto a una rappresentazione, in cui ciascun asse rappresenta una delle 14 competenze identificate (tecniche e trasversali); i tre profili oggetto di analisi – Project Manager, Middle manager e C-level – sono stati rappresentati in termini di:

- 1. Livello attuale di possesso delle competenze
- 2. Importanza attribuita nel proprio ruolo alle competenze

I grafici sono poi stati il punto di partenza per delle considerazioni finali

Nell'analisi dei risultati, col fine di concentrarsi su come debbano evolvere le competenze per una crescita personale, l'analisi dei risultati è limitata a Middle manager e C-level

Analisi dei risultati: approfondimento Middle manager

I risultati emersi nel grafico radar per i Middle manager sono presentati nella seguente figura:

Osservatorio Cloud Transformation Middle manager: competenze attuali e gap formativi & Data Center «Cloud Ops» Gestione delle architetture IT Change management Legenda Data management & Contrattualistica **Analytics** Competenze attuali Gestione e sviluppo del Punteggio molto alto capitale umano Sicurezza e compliance Punteggio alto Project management Sviluppo software Punteggio basso Sostenibilità Punteggio molto basso Conoscenza offerta IT Collaborazione e interlocuzione con Gestione finanziaria interni ed esterni Campione: 40 rispondenti Innovazione osservatori.net fondirigenti FEDERMANAGER

Figura 5 - Middle Manager: competenze attuali e gap formativi

Il profilo dei Middle manager si presenta, nel complesso, piuttosto "variabile", soprattutto se confrontato con quello dei C-level, che è invece caratterizzato da una maggiore "completezza", a testimonianza di competenze più ampie e uniformi da parte di questi ultimi.

Middle manager Per queste figure, si osservano i principali gap nelle aree della sostenibilità, della gestione finanziaria, del data management & analytics e dello sviluppo software. L'analisi evidenzia che, soprattutto nei temi più innovativi (come la sostenibilità e il data management & analytics) i Middle manager non si percepiscono ancora sufficientemente competenti. Per la gestione finanziaria, la principale difficoltà potrebbe derivare dalla mancanza di una piena visibilità e padronanza degli aspetti legati alla pianificazione finanziaria strategica.

Per quanto riguarda invece i punti di forza, i Middle manager risultano maggiormente preparati nelle attività di collaborazione e interlocuzione con attori esterni, nella gestione e nello sviluppo del capitale umano, nonché nelle competenze legate al mondo delle operations in Cloud ("Cloud Ops"). Risulta interessante notare come la componente relazionale, sia all'interno dell'organizzazione attraverso la gestione e lo sviluppo del capitale umano, sia verso l'esterno tramite la collaborazione con altri attori, rappresenti un punto di forza distintivo per questi profili.

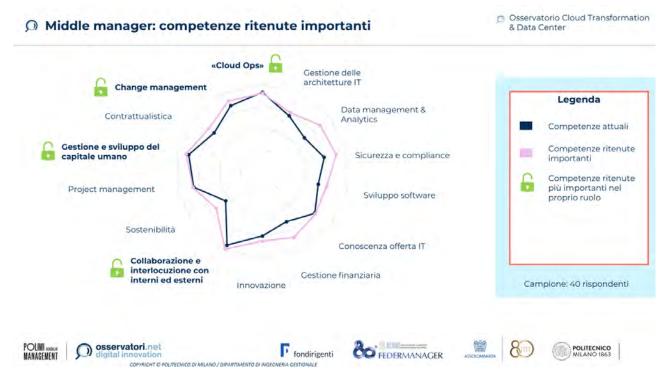


Figura 6 - Middle manager: competenze ritenute importanti

Confrontando il profilo delle competenze effettivamente possedute con quello delle competenze ritenute importanti (profilo violetto), emerge che i maggiori gap si concentrano proprio su quelle competenze meno detenute. Ciò conferma che le competenze che si ritiene di possedere ad un livello più basso sono anche quelle in cui i Middle manager avvertono una maggiore esigenza formativa. Da notare inoltre che anche per competenze quali sicurezza e compliance, che registrano buoni punteggi in termini di possesso attuale, permangono gap significativi, dovuti all'alta importanza che viene attribuita alla competenza.

Rispetto alle competenze ritenute importanti, risulta l'importanza delle competenze trasversali, quali gestione del capitale umano, collaborazione verso l'esterno e change management senza trascurare le competenze tecniche" – in particolare quelle più innovative, che trattano temi come dati (AI), cybersecurity e cloud –. Quello che emerge dall'importanza data alle varie competenze è come un buon manager debba possedere un giusto mix di competenze tecniche e trasversali (ovviamente in relazione al proprio ruolo, non intese come prettamente operative)

Analisi dei risultati: Approfondimento C-level

Il profilo delle competenze possedute dai C-level presenta caratteristiche in parte diverse rispetto ai Middle manager, come si evince dalla figura seguente.

Osservatorio Cloud Transformation C-level: competenze attuali e gap formativi & Data Center «Cloud Ops» Gestione delle architetture IT Change management Legenda Data management & Contrattualistica **Analytics** Competenze attuali Gestione e sviluppo del Punteggio molto alto capitale umano Sicurezza e compliance Punteggio alto Project management Sviluppo software Punteggio basso Sostenibilità Punteggio molto basso Conoscenza offerta IT Collaborazione e interlocuzione con Gestione finanziaria interni ed esterni Innovazione Campione: 40 rispondenti) osservatori.net fondirigenti FEDERMANAGER

Figura 7 - C-level: competenze attuali e gap formativi

A livello generale, si rileva una minore variabilità e una più uniforme distribuzione delle competenze, pur a fronte di alcune criticità peculiari. I principali gap individuati si concentrano su sostenibilità e conoscenza dell'offerta IT

Questi gap risultano particolarmente evidenti anche nella rappresentazione grafica: la sostenibilità continua a rappresentare un'area su cui le competenze pratiche sono scarse, mentre la conoscenza dell'offerta IT potrebbe apparire come meno strategica allo stato attuale, sebbene i cambiamenti geopolitici in atto suggeriscano una sua crescente centralità nei prossimi anni.

Per le altre aree di competenze, invece, il livello è mediamente alto, con dei picchi sui temi di gestione finanziaria, collaborazione ed interlocuzione con esterni e gestione delle architetture IT. Risulta particolarmente interessante il tema della gestione finanziarie, vista l'altissima importanza che questo tema ricopre per i top manager. La forte attenzione al tema delle architetture IT potrebbe essere un elemento distintivo per indicare la crescente importanza che le infrastrutture Cloud e Data Center stanno assumendo, anche in ottica di abilitatori dell'Intelligenza Artificiale.

Analizzando le competenze ritenute importanti dai C-level, emerge un quadro che riflette in gran parte le competenze effettivamente possedute. Le aree ritenute di maggiore importanza riguardano la capacità di collaborare e interagire con soggetti esterni, le competenze relative al change management, lo sviluppo software e la gestione finanziaria. Al contrario, risulta che competenze come la sostenibilità e la conoscenza dell'offerta IT siano percepite come meno rilevanti, coincidendo peraltro con gli ambiti in cui i C-level stessi dichiarano di possedere un livello di competenza più basso.

Osservatorio Cloud Transformation O C-level: competenze ritenute importanti & Data Center «Cloud Ops» Gestione delle architetture IT Change management Legenda Data management & Contrattualistica Analytics Competenze attuali Gestione e sviluppo del Competenze ritenute capitale umano importanti Sicurezza e compliance Competenze ritenute Project management più importanti nel proprio ruolo Sviluppo software Sostenibilità Conoscenza offerta IT Collaborazione e interlocuzione con Gestione finanziaria interni ed esterni Innovazione Campione: 40 rispondenti fondirigenti **FEDERMANAGER**

Figura 8 - C-level: competenze ritenute importanti

A dispetto di questa analisi, il confronto tra il possesso attuale (grafico blu) e l'importanza attribuita (grafico violetto) mostra che sostenibilità e conoscenza dell'offerta IT sono le aree in cui emergono i maggiori scostamenti, seguite da data management & analytics e competenze legate al cambiamento. Per questo, nonostante la minore importanza attribuita attualmente a queste competenze, sono due aree di sviluppo che potrebbero avere una crescente importanza nei prossimi anni e, di conseguenza, potrebbero essere due possibili tematiche interessanti di formazione per i top manager.

Sempre in quest'ambito, è particolare la situazione relativa al Project Management, dove si segnala quasi un fenomeno di "over-skilling". Una situazione simile si presenta anche per il tema della "gestione delle architetture IT". Nel complesso, tuttavia, la distanza tra competenze possedute e ritenute importanti risulta minore per i C-level rispetto ad altri profili.

Analisi dei risultati: competenze per l'avanzamento di carriera

Una volta analizzato lo stato attuale delle competenze relative ai Middle manager e ai C-level, si è condotta un'ulteriore analisi per capire quali siano le competenze su cui focalizzarsi per i percorsi di crescita e gli avanzamenti di carriera.

Questa analisi riguarda il percorso di crescita dal ruolo di Middle manager a quello di C-level. A tal fine, per i Middle manager sono stati valutati sulle risposte alle competenze richieste ai C-level

(grafico verde acqua), confrontando i risultati con il livello di importanza attribuito dai C-level stessi a quelle competenze (grafico violetto). Qui di seguito sono riportati i risultati:

Figura 9 - Le competenze per diventare C-level

Dal grafico emerge che, nel complesso, i Middle manager presentano livelli di competenza inferiori rispetto a quanto ritenuto necessario dai C-level nelle aree chiave, fatta eccezione per il Project Management, dove invece superano le aspettative.

I principali gap si evidenziano in ambiti quali la sostenibilità, la sicurezza e compliance, lo sviluppo software e la contrattualistica. Questi risultati indicano la necessità per i Middle manager di focalizzarsi maggiormente sulle tematiche emergenti, in particolare su sostenibilità e cybersecurity. Un altro gap che emerge riguarda invece la gestione finanziaria, per cui il gap sembra riconducibile all'evoluzione delle responsabilità manageriali, con una crescente enfasi posta sulla pianificazione economica e sul budgeting da parte del top management.

Viceversa, il divario risulta meno rilevante nelle aree del Project Management, nella gestione e sviluppo del capitale umano, nella conoscenza dell'offerta IT e nella gestione delle architetture IT. È importante sottolineare come le competenze nell'ambito della gestione delle risorse umane e delle attività operative rappresentino già un punto di forza, costituendo una base solida per operare in contesti più articolati e con team di dimensioni maggiori.

Evidenze: i principali gap formativi

Col fine di dare una visione di insieme di quanto visto nei paragrafi precedenti, si è cercato di dare un'evidenza finale tramite una matrice di sintesi, che offre una panoramica visiva dei principali gap rilevati per C-level e Middle manager. Sulla base di tale analisi, le macro-aree con i gap più marcati (la grandezza del gap è data dalla dimensione della "bolla") dovrebbero costituire il focus prioritario delle attività formative.

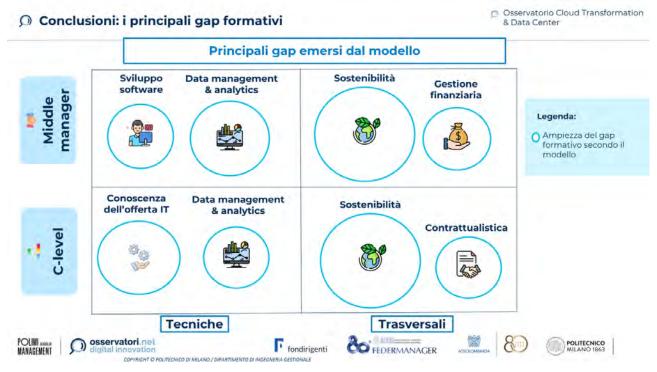


Figura 10 - I principali gap formativi

In generale, emerge che alcune competenze, come il data management & analytics e la Sostenibilità siano lacune presenti per entrambe le tipologie di manager. Andando ad analizzare invece le competenze ritenute più importanti, è interessante notare come collaborazione e interlocuzione con attori interni ed esterni, gestione del capitale umano e change management siano segnalate da entrambe le categorie di manager

Per validare quanto evidenziato nella matrice, la survey ha permesso di rilevare quali siano le aree in cui i manager desiderano ricevere formazione nei mesi successivi tramite una domanda specifica. I risultati, su campione aggregato (Project Manager, Middle manager e C-level), evidenziano che le tre competenze maggiormente richieste sono:

- Data Management & Analytics (43% dei rispondenti)
- · Competenze legate alla sicurezza e alla compliance (43%)
- · Competenze legate all'innovazione (40%)

Le competenze meno richieste risultano essere la "conoscenza dell'offerta IT" (3% dei rispondenti) e la "contrattualistica" (5%). L'analisi per cluster non rileva significative differenze rispetto al campione aggregato: anche tra i Middle manager le competenze più richieste coincidono con quelle del totale, mentre nei C-level il quadro si modifica leggermente:

- Data Management & Analytics (45%)
- · Competenze legate all'innovazione (45%)
- · Competenze legate al cambiamento (36%)
- Competenze di collaborazione ed interlocuzione efficace con gli attori chiave, interni ed esterni all'organizzazione (36%)

Da questo dato si deduce come la gestione del cambiamento e l'innovazione, tipicamente presidiati dal vertice aziendale, siano particolarmente rilevanti per i C-level. Inoltre, le competenze relazionali assumono ancor più importanza per i C-level, soprattutto per quanto riguarda le relazioni esterne (ad esempio verso interlocutori istituzionali o politici).

Alla luce dei risultati della survey e, più in generale, delle evidenze progettuali, è possibile individuare le principali priorità formative per i manager IT. L'analisi comparata dei diversi profili radar indica tre aree di sviluppo prioritarie:

- 1. Data management & analytics
- 2. Innovazione sostenibile e leadership per il cambiamento
- 3. Conoscenza dell'offerta e networking tecnologico

Per la maggior parte dei manager (C-level e Middle manager), queste rappresentano le aree su cui risulta maggiormente necessaria la formazione.

5. CONCLUSIONI

L'utilizzo del modello radar ha permesso di delineare in modo preciso il profilo delle competenze manageriali nell'area Cloud e Data Center, mettendo in luce sia un buon livello di preparazione generale sia alcune lacune significative in ambiti strategici per la futura competitività. In questo contesto, risulta essenziale investire in programmi formativi mirati, specialmente su temi come Data management & analytics, collaborazione esterna e sostenibilità, poiché rappresentano elementi abilitanti fondamentali per guidare efficacemente i processi di trasformazione digitale e rafforzare un vantaggio competitivo sostenibile nel tempo.

Dall'analisi delle competenze considerate più rilevanti emerge quanto la capacità di collaborare con gli stakeholder interni ed esterni, la gestione delle risorse umane e il change management siano aspetti centrali per entrambe le tipologie di manager. Il possesso di tali competenze si conferma essenziale per assumere un ruolo di leadership nei processi in cui l'IT è sempre più una leva strategica nell'affrontare le sfide legate all'incertezza.

Guardando al futuro, l'incessante evoluzione digitale e, in particolare, la crescita dell'intelligenza artificiale renderanno ancora più rilevanti le infrastrutture Cloud e Data Center. Di conseguenza, le competenze in questi ambiti acquisiranno una centralità crescente, permettendo ai manager, a tutti i livelli, di rimanere aggiornati e competitivi nel proprio percorso professionale

6. LA PRESENTAZIONE DEL PROGETTO

Il 2 ottobre 2025, presso la sede del Politecnico di Milano, si è tenuta la presentazione conclusiva di questo progetto, alla presenza di tutti i partner coinvolti (Aldai-Federmanager, Assolombarda e Fondirigenti). L'evento è stato aperto dalle introduzioni di Massimo Sabatini (direttore generale Fondirigenti) e Paolo Ferrario (direttore Aldai-Federmanager), e arricchito dall'intervento di Viviana Palmieri (referente per la trasformazione digitale di Assolombarda), mentre la conclusione è stata affidata a Marco Bodini (presidente Fondirigenti).

All'iniziativa hanno partecipato 89 persone, che hanno potuto seguire la presentazione dei principali risultati raggiunti da parte di tutte le parti coinvolte. Sono quindi intervenuti rappresentanti di aziende e associazioni, con contributi tra cui:

- Daniele Urbano, Head of Offering Development CyberSecurity, Exprivia;
- Luca Luchesini, Sales Director Saudi Arabia Network Infrastructure, Nokia;
- Alessio Panni, Partner, Head of Cloud & Platforms, Prometeia.

La presentazione del progetto si è inserita all'interno del convegno finale dell'Osservatorio Cloud Transformation, dal titolo "Il Cloud tra AI e Sovranità: strategie e politiche industriali per un nuovo ecosistema digitale". Nel corso dell'evento sono stati approfonditi sia lo stato attuale che le evoluzioni future del mondo Cloud. Particolare attenzione è stata dedicata al tema delle competenze: alla luce dei profondi cambiamenti determinati dalla trasformazione digitale, la necessità di nuove skill – emersa con forza nel progetto – è apparsa sempre più centrale. Soprattutto in un contesto geopolitico complesso e con una crescente attenzione su sicurezza e sovranità del dato, queste competenze risultano indispensabili per accompagnare la transizione verso un nuovo ecosistema digitale.

Un aspetto chiave emerso dal confronto riguarda inoltre il ruolo dei manager: è fondamentale che sappiano proporre una visione innovativa e focalizzarsi su competenze avanzate e trasversali, per guidare al meglio i processi di trasformazione.

Infine, durante la tavola rotonda, gli ospiti hanno condiviso i propri punti di vista e la propria esperienza pratica sul tema delle competenze manageriali, con particolare riferimento ad ambiti come Cloud, Data Center, Intelligenza Artificiale e Cybersecurity.

7. NOTA METODOLOGICA

In questo capitolo vengono presentate le principali precisazioni riguardanti la metodologia utilizzata per lo sviluppo del modello e la raccolta dei risultati.

Sviluppo del modello

La costruzione del modello ha avuto come punto di partenza un framework già consolidato e riconosciuto a livello internazionale, il "Digital E-Competences Framework", che costituisce un riferimento fondamentale per la comprensione e la categorizzazione delle competenze digitali richieste nel contesto lavorativo attuale. A partire da tale riferimento, la ricerca è stata ulteriormente arricchita facendo ricorso al database "O Net", una risorsa online di rilevanza internazionale che raccoglie e descrive le principali competenze associate a una vasta gamma di ruoli professionali. Questo database, supportato dal "U.S. Department of Labor", garantisce l'attendibilità e la completezza delle informazioni fornite.

Nell'ambito della ricerca sono state utilizzate specifiche parole chiave per identificare le competenze maggiormente rilevanti nel contesto di studio. Le keyword selezionate sono state:

- "Cloud"
- "Information Technology"
- "Data Center"

Dall'analisi di queste parole chiave sono stati individuati alcuni ruoli professionali di particolare interesse, tra cui:

- Information Technology Project Manager
- Computer and Information Systems Manager
- Chief Executives (categoria che comprende ruoli di livello C, come CIO e CTO)

Oltre ai modelli sopracitati, si è fatto riferimento anche ad altri framework fondamentali al fine di integrare e confrontare i risultati. Tra questi si segnala il framework DigComp 2.1, sviluppato dall'Agenzia per l'Italia Digitale, che offre un quadro dettagliato delle competenze digitali rilevanti per il contesto nazionale. Per l'analisi delle competenze comportamentali e relazionali, è stato invece adottato l'"Emotional Intelligence Quadrant" di Daniel Goleman, strumento efficace per l'analisi e lo sviluppo delle soft skills.

Parallelamente a queste fonti esterne, sono stati impiegati materiali e modelli sviluppati internamente dall'Osservatorio Cloud Transformation, dall'Osservatorio Data Center e, in generale, dagli Osservatori Digital Innovation del Politecnico di Milano. Tali documenti, orientati in particolare ai settori Cloud e Data Center, sono stati fondamentali per la definizione e la caratterizzazione delle competenze tecniche specifiche di questi ambiti.

Validazione del modello e analisi dei risultati

Una volta elaborata una prima bozza del modello, con la preliminare identificazione delle competenze chiave, è seguita una fase di validazione qualitativa, basata su 10 interviste a esperti e professionisti del settore (manager in ambito IT). Tale passaggio aveva un duplice obiettivo: da un lato verificare la coerenza e l'efficacia del modello rispetto alle reali esigenze del mercato, dall'altro accertarsi che le competenze individuate corrispondessero effettivamente a quelle più rilevanti e necessarie nel contesto analizzato. Sulla base delle evidenze raccolte, il modello è stato più volte revisionato e perfezionato, sia nella struttura sia nei contenuti.

Per validare ulteriormente le ipotesi e raccogliere dati quantitativi, è stata successivamente somministrata una survey, i cui risultati sono stati analizzati nel dettaglio nel capitolo del report "I Risultati". L'indagine si poneva l'obiettivo di identificare le competenze su cui erano presenti i maggiori gap formativi e quelle considerate più importanti dai rispondenti e di raccogliere spunti utili per ulteriori approfondimenti e sviluppi del modello.

Il campione dei rispondenti è stato selezionato direttamente dai database dell'Osservatorio e comprende 40 aziende appartenenti sia al settore IT sia ad altri comparti industriali. I rispondenti sono così divisi tra i diversi settori: Manufacturing 3%, Finance (Banche – Assicurazioni) 8%, Servizi 34%, Utility ed Energy 5%, Retail e GDO 5%, PA e Sanità 8%, Telco e Media 13%, Altro 24%. Per garantire coerenza e attendibilità, tutti i partecipanti ricoprono ruoli di manager IT all'interno delle rispettive organizzazioni. Le imprese coinvolte nel campione hanno sede nelle province di Milano, Pavia e Monza, consentendo un'analisi contestualizzata e rappresentativa di un'area geografica particolarmente dinamica e rilevante.

Per quanto riguarda l'analisi dei risultati della survey, sono stati elaborati grafici radar, al fine di agevolare la lettura dei dati. Sugli assi di tali grafici sono state riportate le 14 competenze tecniche e trasversali, accompagnate dal relativo punteggio da 1 (minimo) a 4 (massimo) in riferimento sia al possesso attuale della competenza sia alla sua importanza percepita, a seconda della domanda posta nel questionario.

